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Abstract
Increasing inhibitory input to single neuronal models, such as the FitzHugh–
Nagumo model and the Hodgkin–Huxley model, can sometimes increase their
firing rates, a phenomenon which we term inhibition-boosted firing (IBF). Here
we consider neuronal models with diffusion approximation inputs, i.e. they
share the identical first- and second-order statistics of the corresponding Poisson
process inputs. Using the integrate-and-fire model and the IF-FHN model, we
explore theoretically how and when IBF can happen. For both models, it is
shown that there is a critical input frequency at which the efferent firing rate is
identical when the neuron receives purely excitatory inputs or exactly balanced
inhibitory and excitatory inputs. When the input frequency is lower than the
critical frequency, IBF occurs.

PACS number: 87.19.La

1. Introduction

The reason why neurons in the cortex receive and emit stochastic rather than deterministic
signals remains elusive, despite a century of research activity. The advantage of deterministic
signal transmission over stochastic is obvious: it is much more economic and reliable. The
stochastic part of a signal is usually thought of as ‘noise’ and is the part any system tries to
get rid of. In stochastic resonance theory [5, 19], noise is hypothesized to be useful, but an
application of the theory to the neuronal system tells us that it only works inside a very limited
parameter region and that a carefully adjusted input signal is required [14]. Another possible
role played by noise in neuronal systems is that, with the help of noise, a neuron, such as
the Hodgkin–Huxley [20, 31] and the FitzHugh–Nagumo [17, 24, 31] model (not shown), can
increase its efferent firing rate when inhibitory inputs increase. As in the literature [4,7,12], we
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assume that a neuron receives inputs ranging from purely excitatory inputs to exactly balanced
inhibitory and excitatory inputs.

A natural and interesting question is then why and when increasing inhibitory inputs
to a neuron can boost its efferent firing rate. A full treatment of the Hodgkin–Huxley and
FitzHugh–Nagumo model with stochastic inputs is difficult, although this might not always
remain ‘a formidable task’ [31]. The traditional and theoretically tractable way to deal with
the models with Poisson inputs is to consider the models with diffusion approximation inputs,
i.e. inputs with identical mean and variance as the Poisson process. We first numerically
show that the Hodgkin–Huxley model exhibits the inhibition-boosted firing (IBF) when it
receives diffusion approximation inputs. We then turn to the integrate-and-fire (IF) model and
the IF-FHN model with diffusion approximation inputs. The IBF phenomenon is observable
for both models, which indicates that IBF is not due to complex, nonlinear mechanisms of
biophysical models. Theoretical results for the IF model and IF-FHN model are developed,
which elucidates the mechanism underpinning the IBF phenomenon.

The IF model is one of the most widely used models in (theoretical) neuroscience. It is an
extremely simplified model and is linear (before resetting). Nevertheless, in the literature, a
transparent and theoretical result on its input–output relationship is lacking (see for example,
equation (9.238) in [31]). We apply theoretical results to the IF model and a simple relationship
between input and output frequency is obtained. The formula enables us to prove that when
the input frequency is lower than a critical frequency, the output frequency is higher when
the neuron receives a mixture of inhibitory and excitatory inputs than when it receives purely
excitatory inputs. Moreover, the critical frequency is unique. For the IF-FHN model, a model
which is originally proposed to mimic the FitzHugh–Nagumo model, we apply Kramer’s
formula to prove that there is a critical frequency at which the efferent firing rate when the
model receives purely excitatory inputs is equal to the rate with exactly balanced inputs.

Roughly speaking, the IBF phenomenon is due to a competition between two driving
forces of neurons: stochastic and deterministic. Assume that a is the magnitude of EPSPs
(excitatory postsynaptic potentials) or IPSPs (inhibitory postsynaptic potentials) and λ is the
input frequency. When the neuron receives purely excitatory inputs, the deterministic force
is proportional to aλ and the stochastic force is a2λ. For the exactly balanced input case,
the deterministic force is 0 and stochastic force is 2a2λ. In general, the deterministic force
is more efficient in driving a cell to fire and therefore increasing inhibitory input reduces the
firing rate of a neuron, in agreement with our intuition. However, when λ is small enough, the
deterministic force of purely excitatory inputs is aλ and the deterministic force plays a minor
role in driving the cell to fire. In other words, now the noise term is more prominent. The
noise term for the exactly balanced input case is 2a2λ, which is twice that for purely excitatory
inputs, a2λ. Therefore under these circumstances the neuron fires faster when inhibitory inputs
increase, i.e. noise increases.

The above scenario provides us with the answer to the ‘why’ question. It is of
equal importance to answer the ‘when’ question, since in parameter regions where the IBF
phenomenon occurs the neuron might fire too slowly and have no physiological reality. For
the IF model and in parameter regions used in the literature, this is truly the case. It is difficult
to observe it if only numerical simulations are employed. This might also tell us that why
the IBF phenomenon has never been reported in the literature. Nevertheless, for the IF-FHN
model, there is a physiologically reasonable region of (a, λ) in which increasing inhibitory
inputs increases neuronal firing rate, as we have observed for the Hodgkin–Huxley model and
the FitzHugh–Nagumo model. We fully characterize this region for the IF-FHN model. As
we have pointed out before [16], the nonlinear leakage in the IF-FHN model ensures that it
behaves very differently from the IF model.
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The arguments above also indicate that increasing inhibitory inputs boosting neuronal
firing rate is a universal phenomenon. Whether we can observe it or not in a physiologically
plausible parameter region depends on neuronal parameters, or for real neurons, on the
environment in which they operate. Since a neuron usually receives a massive excitatory
and inhibitory input, we hope our finding may shed new light onto the coding problem [15,18]
and suggest another functional role of inhibitory inputs [32], or noise terms in signal inputs.

As a by-product, our results also alter another conventional view in theoretical
neuroscience: increasing inhibitory inputs results in an increase of the randomness of output
spike trains. In recent years, the issue has been extensively discussed [1, 4, 7, 27, 28]. A more
general and biologically realistic principle is that the faster a neuron fires, the more regular its
interspike intervals are. In terms of this principle, we demonstrate that in the parameter regions
in which the IBF occurs, the efferent interspike intervals become more regular when inhibitory
inputs increase. Here the regularity of efferent spike trains is measured by the coefficient of
variation (CV) of interspike intervals, i.e. standard deviation/(mean + refractory period) for
the IF and the IF-FHN model.

2. Models

For two given quantities Vthre > Vrest and when vt < Vthre, the membrane potential vt satisfies
the following dynamics:

dvt = −L(vt )vt dt + dIsyn(t)

v0 = Vrest.
(2.1)

Isyn(t) is the synaptic input given by

dIsyn(t) = µ dt + σ dBt (2.2)

with constants µ � 0, σ � 0 and the standard Brownian motion Bt [31]. Once vt is greater
than Vthre, it is reset to Vrest. More specifically we define

µ = aλ(1 − r) σ 2 = a2λ(1 + r) (2.3)

where a > 0 is the magnitude of EPSPs and IPSPs, λ is the input rate and r is the ratio between
inhibitory inputs and excitatory inputs. In particular, when r = 0 the neuron exclusively
receives excitatory inputs; when r = 1 the inhibitory and excitatory input is exactly balanced.
Here, for simplicity of notation, we assume that the EPSP and IPSP size are equal and refer the
reader to [1,22] for a more complete and biologically oriented formulation of synaptic inputs.

When L(v) = L > 0, a constant, the model is termed the IF model; when the leakage
coefficient

L(v) = γ (v − Vthre)(v − α) +
1

β
(2.4)

with constants γ > 0, α > 0, β > 0, the model is as proposed in [10] for mimicking the
FitzHugh–Nagumo model.

Unlike the IF model, for the IF-FHN model the leakage coefficient is not a constant. When
the membrane potential is between the resting potential Vrest ∼ 0 and the threshold Vthre, the
leakage coefficient L(v) is positive. Hence the system will gradually lose its memory of
recent activation. However, L(v) is very different from L. L(v) is larger when the membrane
potential is close to the resting potential. The more the membrane potential is away from its
threshold, the larger the decay is. This mechanism naturally prevents the membrane becoming
too negative, a mechanism the IF model lacks, and we have to set a lower bound for the IF model.
The leakage coefficient vanishes when the membrane potential is close to the threshold. In
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Figure 1. Mean output frequencies versus 100r for the HH model with λ = 7, 5, 4, 3 kHz,
a = 0.5 mV (a) diffusion approximation inputs, (b) corresponding Poisson inputs.

other words, when the membrane potential is near resting potential, the model loses its memory
rapidly. Incoming signals accumulate less effectively to increase membrane potential. When
membrane potential is near to the threshold, however, the IF-FHN model behaves more like a
perfect IF model. The IF-FHN model now has a very good ‘memory’ and in a sense ‘waits’
just below the threshold. As soon as some positive signals arrive, the neuron fires. Therefore,
below the threshold, the IF-FHN model behaves as a combination of the leaky IF model and
the perfect IF model.

Once the membrane potential is above a certain value, L(v) < 0 and now it acts as an
amplifier of incoming signal, rather than as a leakage. It will increase membrane potential
until it arrives at its maximum value and then L(v) becomes positive again.

In the sequence, we define

T (r) = inf{t : vt � Vthre} (2.5)

as the mean firing time for r ∈ [0, 1]. For the IF-FHN model a constant refractory period of
Tref = 3.2 ms is usually added to T (r), which is approximately the refractory period of the
FitzHugh–Nagumo model [4].

3. Examples

We first consider the classic HH model with synaptic inputs given by

C dV = −gNam
3h(V − VNa) dt − gk n4(V − Vk) dt − gL(V − VL) dt + dIsyn (V , t). (3.1)

The synaptic input is given by Isyn(V , t) = Isyn(t) or Isyn(V , t) = aNE(t) − aNI (t) where
NE(t) and NI(t) are Poisson processes with rate λ and rλ. The equations and parameters used
in the HH model are standard (see [4, 31]).

We use the following set of parameters in simulations [4] for the IF-FHN model:

γ = 100 α = 0.2 β = 2.5
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Figure 2. a = 0.1 for the IF-FHN model. (a) When λ = 5.0 kHz, 〈T (0)〉 + Tref = 6.33 ms;
λ = 3.8 kHz, 〈T (0)〉 + Tref = 14.36 ms and λ = 3.0 kHz, 〈T (0)〉 + Tref = 57.17 ms. (b) Standard
deviation of T (r) versus 〈T (r)〉. It is easily seen that the standard deviation is almost equal to
〈T (r)〉, namely the efferent spike trains are Poisson process.

vthre = 1 and vrest = 0. Recently it has been shown in [16] that the HH (IF-FHN) model and
the IF model behave in opposite ways when they receive correlated inputs.

In figure 2 we see that when the excitatory input frequency is high (λ = 5 kHz), the output
firing rate is a decreasing function of inhibitory input rate, in agreement with our intuition. For
example, when r = 0, 〈T (0)〉 + Tref = 6.33 ms and r = 1, 〈T (1)〉 + Tref = 8.32 ms. When the
excitatory input frequency is around (λ = 3.8 kHz), the output firing rate is almost a constant
function of inhibitory input rate. For example, when r = 0, 〈T (0)〉 + Tref = 14.36 ms and
r = 1, 〈T (1)〉 + Tref = 14.26 ms. Further reducing the excitatory input rate shows the IBF
phenomenon: increasing inhibitory inputs increases neuronal firing rates. For example, when
r = 0, 〈T (0)〉 + Tref = 57.17 and r = 1, 〈T (1)〉 + Tref = 29.87.

Let us define a critical input frequency λc as the quantity which satisfies

〈T (0)〉 = 〈T (1)〉. (3.2)

The numerical results of figure 2 tell us that λc ∼ 3.8 kHz when a = 0.1.
It has been widely reported in the literature that increasing inhibitory input to a neuron

could increase the variability of its output [3,4,8,9,27,28]. Figure 2(a) shows standard deviation
versus mean firing time 〈T (r)〉. As we have reported before [4], the standard deviation of T (r)

almost equals its mean. Therefore in the no-IBF parameter regions, increasing inhibitory input
induces an increase of its variability of output. However, in the parameter regions in which
the IBF occurs, we see that now the CV of T (r) is a decreasing function of r rather than an
increasing function of r , in contrast to conventional theory in the literature. Note that

CV = standard deviation

mean + refractory period

where the refractory period is 8.32 ms. Hence figures 2 and 3 are consistent.
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Figure 3. CV of IF-FHN model. CV could be either an increasing or a decreasing function of r .

4. Theoretical results

The main purpose of this section is to characterize the parameter regions of (a, λ) in which
increasing inhibitory input increases neuronal firing rates. It thus gives us a complete picture
of the IF model and IF-FHN model behaviour, and provides us with the answers to the ‘when’
and ‘why’ questions.

4.1. The IF model

As in [10], we could use the large-deviation theory [2] to estimate the mean firing time of the
model. The obtained results are quite clear-cut. However, it is an approximation result and the
accuracy is quite poor (not shown). Recently we have developed a rigorous theory [13] on the
calculation of the mean firing time of the one-dimensional neuron model. We therefore adopt
the rigorous approach here.

To this end, we first introduce some general notation. Consider a diffusion process defined
by

dXt = µ(Xt) dt + σ(Xt) dBt . (4.1)

Let us introduce the following quantities:

s(x) = exp

(
−

∫ x

0

2µ(y)

σ 2(y)
dy

)

m(x) = 1

s(x)σ 2(x)
=

exp
( ∫ x

0
2µ(z)

σ 2(z)
dz

)
σ 2(x)

(4.2)

where m is the speed density and s is the scale function. We call a diffusion process positive-
recurrent if

∫ ∞
−∞ m(x) dx < ∞, which is equivalent to 〈T 〉 < ∞, where T is the first exit

time of (−∞, Vthre]. For a positive-recurrent process [23], its stationary distribution density
is given by π(x) ∝ m(x).

The following conclusion is proved in [13].

Theorem 1. For a positive-recurrent diffusion process Xt we have

〈T 〉 = 2
∫ Vthre

Vrest

s(u) du ·
∫ Vrest

−∞
m(u) du + 2

∫ Vthre

Vrest

( ∫ Vthre

y

s(u) du

)
· m(y) dy
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= 2
∫ Vthre

Vrest

( ∫ y

−∞
m(u) du

)
· s(y) dy. (4.3)

According to the definition of the scale function we have

s(x) = exp

(
Lx2 − 2aλ(1 − r)x

a2λ(1 + r)

)
(4.4)

and therefore

〈T (r)〉 = 2
∫ Vthre

Vrest

1

a2λ(1 + r)
exp

(
Lx2 − 2aλx(1 − r)

a2λ(1 + r)

)

×
( ∫ x

−∞
exp

(
− Lu2 − 2aλu(1 − r)

a2λ(1 + r)

)
du

)
dx

= 2

L

∫ Vthre
√

L

a
√

λ(1+r)
−

√
λ(1−r)√
L(1+r)

Vrest
√

L

a
√

λ(1+r)
−

√
λ(1−r)√
L(1+r)

[
exp(x2)

∫ x

−∞
exp(−u2) du

]
dx. (4.5)

For simplicity of notation let us assume that Vrest = 0. We have

〈T (0)〉 = 2

L

∫ Vthre
√

L

a
√

λ
−

√
λ√
L

−
√

λ√
L

[
exp(x2)

∫ x

−∞
exp(−u2) du

]
dx

〈T (1)〉 = 2

L

∫ Vthre
√

L

a
√

2λ

0

[
exp(x2)

∫ x

−∞
exp(−u2) du

]
dx.

(4.6)

Taking the limit λ → 0 we obtain

〈T (0)〉 ∼ 2

L

∫ Vthre
√

L

a
√

λ

0

[
exp(x2)

∫ x

−∞
exp(−u2) du

]
dx

> 〈T (1)〉 = 2

L

∫ Vthre
√

L

a
√

2λ

0

[
exp(x2)

∫ x

−∞
exp(−u2) du

]
dx

(4.7)

since the integral interval for 〈T (1)〉 is[
0,

Vthre

√
L

a
√

2λ

]
⊂

[
0,

Vthre

√
L

a
√

λ

]

which is the integral interval for 〈T (0)〉. It is easily seen that there is a λ > 0 such that

〈T (0)〉 < 〈T (1)〉. (4.8)

Furthermore, all the functions

Vthre

√
L

a
√

2λ

Vthre

√
L

a
√

λ

√
λ√
L

and therefore the integral bounds, are monotonic functions of λ and thus both 〈T (0)〉 and
〈T (1)〉 are monotonic functions of λ. As shown in appendix A, 〈T (0)〉 and 〈T (1)〉 are convex
functions of λ. Hence we have the following theorem.

Theorem 2. There is a unique critical input frequency 0 < λc < ∞ satisfying

〈T (0)〉 = 〈T (1)〉. (4.9)

The IF model has been studied for over a century [22]. Nevertheless it seems that the result
given by equation (4.5) is the simplest rigorous result in the literature [25, 31], and could be
easily employed to explore some related issues [21,22]. In the next section, we apply theorem 1
to the IF-FHN model. In fact, theorem 1 could be employed to tackle any one-dimensional
neuronal model: for example, that of the θ -neuron [6].
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4.2. IF-FHN model

Applying theorem 1 to the IF-FHN model, we obtain

s(x) = exp

[ ∫ x

0

2L(y)y − 2µ

σ 2
dy

]

= exp

[
γ

2σ 2
x4 − 2(Vthre + α)γ

3σ 2
x3 +

αγβVthre + 1

σ 2β
x2 − 2µx

σ 2

]
(4.10)

and

m(x) = 1

σ 2
exp

[
− γ

2σ 2
x4 +

2(Vthre + α)γ

3σ 2
x3 − αγβVthre + 1

σ 2β
x2 +

2µx

σ 2

]
. (4.11)

However, a fully theoretical treatment of these quantities, as in the previous section, is difficult
because of the nonlinearity of the leakage coefficient.

From the data shown in figure 2 we might envisage that Kramer’s formula, a special case
of the large-deviation theory (see [2] and references therein for details) can predict the model
behaviour. Kramer’s model [26] reads

〈T (r)〉 ∼ 2π√
H ′′(vmin)|H ′′(vmax)|

exp
[
2(H(vmax) − H(vmin))/σ

2
]

(4.12)

where

H(v) = γ

[
1

4
v4 − (α + 1)

1

3
v3 +

1

2
αv2

]
+

1

2β
v2 − µv (4.13)

and vmax, vmin are the local maximum and left local minimum of the potential well H . Hence
vmax is the exact threshold of the IF-FHN model. Different from the IF model, now Kramer’s
formula gives quite a good approximation result, as shown in the next section. Due to the
computational advantage of Kramer’s formula, we concentrate on it in the following theoretical
development for the IF-FHN model.

Another interesting feature of the IF-FHN model, different from the IF model, is that the
exact threshold changes in response to synaptic inputs. Here α, β and γ take the values
given before. From figure 4 we see that, to ensure a two-well system, we should have
vmax � 0.096 685. When µ � 0.940 9837, the model becomes a dynamical system with
a single well, i.e. the stimulus is a supra-threshold one.

Now we use a geometrical method to prove, under certain circumstances, that for any
given a > 0, there is a λc > 0 such that

〈T (0)〉 = 〈T (1)〉. (4.14)

If we further know the uniqueness of λc > 0 satisfying equation (4.14), we can assert that
when λ < λc, 〈T (0)〉 > 〈T (1)〉 and when λ > λc, 〈T (0)〉 < 〈T (1)〉.

Consider figure 4: the curve is the function H ′(v)+µ which is thus independent of synaptic
inputs. Therefore, for any given µ � 0, intersections with the horizontal line y = µ give us
vmin and vmax of the potential well with input µ, if vmin and vmax exist, i.e. when the stimulus
is a subthreshold one. In terms of this scenario, we could calculate each term in Kramer’s
formula.

Let us first consider the function

F(µ) =
√

H ′′(vmin)|H ′′(vmax)|
which depends only on µ. Figure 5(a) depicts F(µ) versus µ. It is readily seen that F(µ) is
a decreasing function of µ.
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Figure 4. An explanation of the geometrical method for the IF-FHN model. f (x) = γ (x3−(vthre +
α)x2 + αvthrex) + x/β. When a = 0.1 we know from the previous section that if 0 < µ < 0.38
(indicated by points), IBF occurs.

Figure 5. IF-FHN model. (a) F versus µ. F(µ) is a decreasing function for µ ∈ [0, 0.940 987].
(b) Diff(µ) = H(vmax) − H(vmin) versus µ. Note that Diff depends only on µ as well.

Now consider the second term (figure 5(b))

exp

[
2(H(vmax) − H(vmin))

σ 2

]
= exp

[
2(H(vmax) − H(vmin))

a2λ(1 + r)

]
.

When r = 0 the term above becomes

exp

[
2(H(vmax) − H(vmin) + aλ(vmax − vmin) − aλ(vmax − vmin))

a2λ

]

= exp

[
2(H(vmax) − H(vmin) + aλ(vmax − vmin))

a2λ

]
exp

[
−vmax − vmin

a

]
.

(4.15)
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When r = 1 the term is

exp

[
2(H(vmax) − H(vmin))

2a2λ

]
. (4.16)

It is easily seen that when λ tends to zero, H(vmax) − H(vmin) + aλ(vmax − vmin), r = 0 is
identical to H(vmax) − H(vmin), r = 1. Hence the first term of equations (4.15), (4.16) tends
to infinity as λ → 0. The second term in equation (4.15) is bounded for any λ. Combining
with the behaviour of F(µ), which is a decreasing function of µ, we conclude that

〈T (0)〉 > 〈T (1)〉
provided that λ is small.

The proof of

〈T (0)〉 < 〈T (1)〉
for large λ is trivial. We know from theorem 1 that when λ is large enough

〈T (0)〉 = o(〈T (1)〉).
A more delicate issue is the uniqueness of λc which we have not proved, though our

numerical simulations suggest the validity of the claim.

Theorem 3. For the IF-FHN model, suppose that F(µ) is a decreasing function, then there is
a λc with the property that

〈T (0)〉 = 〈T (1)〉.

Finally, we point out that although here we confine ourselves to IF-FHN model and
therefore the potential function H is given by equation (4.13), all our proofs do not depend on
the concrete form of H .

5. Numerical results

For the IF model, equation (4.5) agrees perfectly with numerical results, as shown in figure 6(a).
Parameters used in the simulations are λ = 10 kHz, a = 0.5 mV, Vthre = 20 mV, Vrest = 0 and
L = 1/20.2.

Figure 6(b) shows a comparison between numerical simulations and results obtained in
terms of Kramer’s formula (see also figures in [10]). We can see that there is a discrepancy
between them, although in general they agree with each other. Moreover, numerical results
are in agreement with large-deviation theory [2] which indicates that

lim
λ→0

σ 2 log〈T (r)〉 = 2[H(vmax) − H(vmin)].

Let us now, in terms of Kramer’s formula, characterize the whole parameter regions of
(a, λ) in which inhibitory inputs increase neuronal firing rates for the IF-FHN model.

Figure 7 shows the curve of λc versus a for 0.02 � a � 0.1. For example, when a = 0.08
we have λc = 4.6 kHz and the neuron fires at a rate of 38 Hz. Namely when λ � λc,
increasing inhibitory input enhances the neuronal firing rates. In general, we see that when the
input frequency is small, the inhibitory input increases the neuronal activity. Therefore, with
the help of inhibitory inputs, a neuron actively modulates its activity: when the input is high,
inhibitory input decreases its firing; when input is low, inhibitory input increases its firing.
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Figure 6. (a) A comparison between equation (4.5) and numerical results of the IF model. Points
are simulation results; the curve represents the exact values by theory. (b) A comparison between
Kramer’s formula and numerical results of the IF-FHN model. Points are simulation results;
dotted curves represent the approximations by Kramer’s formula; solid curves represent the direct
numerical evaluation of the integral in theorem 1.

6. Correlated inputs

In previous sections we considered the IF model and IF-FHN model with independent inputs.
Nevertheless, as we have pointed out before [11], a neuron usually receives spatially correlated
inputs, rather than independent inputs [29, 33]. In this section we consider the impact of
correlated inputs on the IBF phenomenon.

We briefly review the formulation of correlated inputs. Suppose that a neuron is subjected
to NE excitatory synaptic inputs and NI inhibitory synaptic input. Let λ̄ be the firing rate of
each excitatory synapse and ρ be the correlation coefficient between excitatory (inhibitory)
synapses. For simplicity of notation we assume that NE = NI. Then we have

µ = aλ̄NE(1 − r)

σ 2 = a2λ̄NE(1 + ρ(NE − 1))(1 + r).
(6.1)

Hence λ = λ̄NE and when ρ = 0, the neuron receives independent inputs. The correlation
between synapses increases the noise term, but keeps the mean input unchanged. As we have
pointed out before, the IBF phenomenon is due to a competition between the noise force and
the deterministic force. We can naturally expect that increasing correlation, or the noise force,
will facilitate the IBF phenomenon.

Figure 8 presents numerical results further explaining the conclusions above. Even with a
small correlation (ρ = 0.05), the IBF region for the IF-FHN model is considerably enlarged,
compared with the case of ρ = 0.0. Assume that a neuron fires with its maximum rate of
500 Hz: we see from figure 8 that when a � 0.03 (approximately), λ < λc, namely all
physiologically plausible parameters of inputs are inside the IBF region.
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Figure 7. IF-FHN model. (a) λc versus a for the IF-FHN model. (b) Efferent frequency when
λ = λc versus a.

 
  

Figure 8. λc versus a for the IF-FHN model and efferent frequencies 〈T (0)〉 = 〈T (1)〉 when
λ = λc versus a. Note that to ensure the efferent frequencies are in physiologically plausible
ranges, i.e. efferent firing rate �500 Hz, when a > 0.03 (λc < 13.856), λ is in the IBF region.
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As we can see from figure 8 and previous numerical results, in the reasonable parameter
ranges, the Kramer formula offers a fairly good approximation. Denoting λ∗

c(ρ) as the Kramer
approximation of the critical input frequency at which

〈T (0)〉 = 〈T (1)〉
we have the following theorem.

Theorem 4. For the IF-FHN model, with the assumption of unique critical input frequency, if
ρ1 > ρ2, then

λ∗
c(ρ1) > λ∗

c(ρ2).

The theorem above follows from the simple observation that F(µ) is independent of ρ

and

exp

[
2(H(vmax) − H(vmin))

a2λ̄NE(1 + ρ1(NE − 1))(1 + r)

]
< exp

[
2(H(vmax) − H(vmin))

a2λ̄NE(1 + ρ2(NE − 1))(1 + r)

]
when ρ1 > ρ2.

Similar conclusions hold true for the IF model as stated in the following theorem.

Theorem 5. For the IF model, if ρ1 > ρ2 then

λc(ρ1) > λc(ρ2).

The proof is postponed to appendix B.

7. Discussion

We answer the following questions in this paper: why and when does increasing inhibitory
inputs increase neuronal firing rates? For the IF model, we show that there is a unique input
frequency λc at which the efferent firing rate of a neuron is identical when the cell receives
purely excitatory inputs or exactly balanced inhibitory and excitatory inputs. For the IF-FHN
model, by Kramer’s formula, we prove that when input frequency is low enough the model
increases its efferent firing rate when inhibitory inputs are added to the model. Our results
provide a theoretical foundation for the IBF phenomenon and might alter our traditional views
on stochastic inputs of a neuron.

We point out that the mechanism of IBF described here is totally different from that
in [30]. In [30] the authors consider a network of excitatory and inhibitory neurons and find that
increasing the direct external inhibitory input to the inhibitory interneurons, without directly
affecting any other part of the network, can, in some circumstances, cause the interneurons to
increase their firing rates. This is essentially a network phenomenon, but the IBF phenomenon,
as we have emphasized before, is observable for single neuron, whether it is an inhibitory
(interneuron) or an excitatory neuron. Furthermore, the IBF phenomenon cannot be observed
if the input is deterministic which is the case in [30]. The IBF is due to the ergodic property
of a system driven by noise.

The classical approach to neural networks is that excitatory neurons are the main
information carriers. It is thought that neurons receive virtually all significant input from
excitatory inputs, and that inhibitory neurons interact only locally and responsively. The
stronger the (excitatory) inputs, the higher the output rate. When modelling, the conventional
view is that information is received solely through excitatory inputs (EPSPs) [1], and that
neurons process this information either by integration or coincidence detection. Inhibitory
inputs are often thought of as broad dampening influences usually reducing neuronal
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responsiveness to all input. The role of inhibitory inputs has been extensively discussed
in recent years, and various functions have been postulated. These include the production of
a more graded response to changes in input, and facilitating neuronal synchronization [32].
Substantial inhibitory input has also been demonstrated to be one factor which can induce
increased random variability of neuronal output [28]. Here we find a more surprising effect
of inhibitory input: actually increasing the neuronal firing rate. In [4], we reported that
increasing inhibitory inputs had almost no impact on the output firing rate and CF of output
interspike interval for the HH and the FitzHugh–Nagumo models. Results in this paper add an
important new dimension to these results by showing that increasing inhibitory inputs can even
enhance neuronal activity. The IBF phenomenon presented here provides another surprising
feature of neuronal models, and alters our view of how information might be processed by
neurons. It leads us to predict the existence of mechanisms exploring IBF to increase neuronal
responsiveness and sensitivity, involving the inhibitory circuits widely present in the brain.
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Appendix A. The Convexity of the mean firing time as a function of λ

By examining the integral form of the mean firing time in equation (4.6), it is quite clear that
we need only to show the convexity of the following function:

f (y) =
∫ cy− 1

y

− 1
y

g(x) dx (y > 0) (A.1)

where c > 0, and

g(x) = ex2
∫ x

−∞
e−u2

du. (A.2)

Now

g′(x) = 2xg(x) + 1 (A.3)

which is positive for x � 0. With integration by part, it can be easily shown that

g′(x) = −xex2
∫ x

−∞

1

u2
e−u2

du (x < 0). (A.4)

Hence g(x) is strictly increasing for x ∈ R, and

g(x) = − 1

2x

(
1 + xex2

∫ x

−∞

1

u2
e−u2

du

)
(x < 0). (A.5)

Furthermore, let

h(x) = xg(x). (A.6)
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Obviously h(x) is an increasing function for x � 0; and when x < 0,

h′(x) = g(x) + 2x2g(x) + x

= g(x) − 2x2 1

2x

(
1 + xex2

∫ x

−∞

1

u2
e−u2

du

)
+ x

= g(x) − x2ex2
∫ x

−∞

1

u2
e−u2

du

= ex2
∫ x

−∞

(
1 − x2

u2

)
eu2

du > 0 (x < 0).

So xg(x) is also a strictly increasing function for x < 0. Thus

f ′(y) = g

(
cy − 1

y

) (
c +

1

y2

)
− 1

y2
g

(
− 1

y

)
(A.7)

f ′′(y) = g′
(
cy − 1

y

) (
c +

1

y2

)2

+ g

(
cy − 1

y

) (
− 2

y3

)

+
2

y3
g

(
− 1

y

)
− 1

y4
g′

(
− 1

y

)
(A.8)

= 2g

(
cy − 1

y

) [(
cy − 1

y

) (
c +

1

y2

)2

− 1

y3

]

+
2

y3
g

(
− 1

y

) [
1 +

1

y2

]
+

[
c2 +

2c

y2

]
by (A.3). (A.9)

By the mean value theorem

g

(
− 1

y

)
− g

(
cy − 1

y

)
= −g′(ζ )cy ζ ∈

[
− 1

y
,− 1

y
+ cy

]
= −[2ζg(ζ ) + 1]cy.

(A.10)

Hence

f ′′(y) = 2g

(
cy − 1

y

) (
cy − 1

y

) (
c +

1

y2

)2

− 2

y3
[2ζg(ζ ) + 1]cy

+
2

y5
g

(
− 1

y

)
+

(
c2 +

2c

y2

)

= 2g

(
cy − 1

y

) (
cy − 1

y

) (
c +

1

y2

)2

− 4ζg(ζ )c

y2
+

2

y5
g

(
− 1

y

)

= 2

(
c +

1

y2

)2 [(
cy − 1

y

)
g

(
cy − 1

y

)
− ζg(ζ )

]

+
2

y4

[
ζg(ζ ) −

(
− 1

y

)
g

(
− 1

y

)]
+ c2(1 + 2ζg(ζ ))

> 0 since g(x) and xg(x) are increasing functions and (A.3). (A.11)

This ensures the convexity of f (x).

Appendix B. Proof of theorem 5

Proof. For any given 1 > ρ1 > ρ2 > 0, let θi = (1 + ρi(NE + 1)), i = 1, 2, and λ = λ̄NE.
Then we have θ1 > θ2 > 1.
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For given ρi , i = 1, 2, and in terms of equation (4.6), we have

〈T (0)〉i =
∫ p√

λθ2
i

−
√

λ/θ2
i√

L

−
√

λ/θ2
i√

L

g(x) dx
def= G0(λ, θi)

〈T (1)〉i =
∫ p√

2λθ2
i

0
g(x) dx

def= G1(λ, θi) i = 1, 2

(B.1)

where p = Vthre

√
L/a, and

g(x) = 2

L
exp(x2)

∫ x

−∞
exp(−u2)

is a positive increasing function.
Denote λi = λc(ρi) as the unique critical input frequency corresponding to ρi , i = 1, 2.

So

〈T (0)〉i > 〈T (1)〉i λ < λi i = 1, 2. (B.2)

From the proof of theorem 2, we know that G0(λ, θi) = 〈T (0)〉i and G1(λ, θi) = 〈T (1)〉i ,
i = 1, 2, are increasing convex functions of λ. Therefore, to prove λ1 > λ2, it is enough to
show that

〈T (0)〉1 > 〈T (1)〉1 when λ = λ2 (B.3)

i.e.

G0(λ2, θ1) > G1(λ2, θ1). (B.4)

But

G0(λ2, θ1) =
∫ p√

λ2θ2
1

−
√

λ2/θ2
1√

L

−
√

λ2/θ2
1√

L

g(x) dx (B.5)

>

∫ p√
λ2θ2

1

−
√

λ2θ2
1√

L

−
√

λ2θ2
1√

L

g(x) dx (B.6)

= G0(λ2θ
2
1 , 1) (B.7)

= G1(λ2θ
2
1 , 1) = G1(λ

∗, θ2) λ∗ = λ2θ
2
1 θ

2
2 > λ2 (B.8)

> G1(λ2, θ2) = G0(λ2, θ2) (B.9)

> G1(λ2, θ1) (B.10)

where inequality (B.6) is because the integrant g(x) is strictly increasing, and the integral
range is shifted towards negative infinity; inequality (B.10) is from the fact that θ1 > θ2 and
the integral form of G1(λ, θi) in (B.1); equality in equations (B.7), (B.8) and (B.9) is due to
the assumption in the theorem that λ2 is the critical point.

This completes our proof. �
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